Scattering for the non-radial inhomogeneous NLS

نویسندگان

چکیده

We extend the result of Farah and Guzm\'an on scattering for $3d$ cubic inhomogeneous NLS to non-radial setting. The key new ingredient is a construction solutions corresponding initial data living far from origin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrable inhomogeneous NLS equations are equivalent to the standard NLS

A class of inhomogeneous nonlinear Schrödinger equations (NLS), claiming to be novel integrable systems with rich properties continues appearing in PhysRev and PRL. All such equations are shown to be not new but equivalent to the standard NLS, which trivially explains their integrability features. PACS no: 02.30.Ik , 04.20.Jb , 05.45.Yv , 02.30.Jr Time and again various forms of inhomogeneous n...

متن کامل

Scattering for the Non-radial 3d Cubic Nonlinear Schrödinger Equation

Scattering of radial H solutions to the 3D focusing cubic nonlinear Schrödinger equation below a mass-energy threshold M [u]E[u] < M [Q]E[Q] and satisfying an initial mass-gradient bound ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 , where Q is the ground state, was established in Holmer-Roudenko [8]. In this note, we extend the result in [8] to non-radial H data. For this, we prove a non-radial profile decompo...

متن کامل

Scattering for NLS with a potential on the line

We show the H 1 scattering for a one dimensional nonlinear Schrödinger equation with a non-negative, repulsive potential V such that V, xV ∈ W 1,1, and a mass-supercritical non-linearity. We follow the approach of concentrationcompacity/rigidity first introduced by Kenig and Merle.

متن کامل

Rotating points for the conformal NLS scattering operator

We consider the nonlinear Schrödinger equation, with mass-critical nonlinearity, focusing or defocusing. For any given angle, we establish the existence of infinitely many functions on which the scattering operator acts as a rotation of this angle. Using a lens transform, we reduce the problem to the existence of a solution to a nonlinear Schrödinger equation with harmonic potential, satisfying...

متن کامل

Global Well-posedness and Scattering for Defocusing Energy-critical Nls in the Exterior of Balls with Radial Data

We consider the defocusing energy-critical NLS in the exterior of the unit ball in three dimensions. For the initial value problem with Dirichlet boundary condition we prove global well-posedness and scattering with large radial initial data in the Sobolev space Ḣ1 0 . We also point out that the same strategy can be used to treat the energy-supercritical NLS in the exterior of balls with Dirich...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2021

ISSN: ['1073-2780', '1945-001X']

DOI: https://doi.org/10.4310/mrl.2021.v28.n5.a9